位數法、基於百分位數的閾值設定。

多峰分佈:

資料中存在多個峰值,表明資料可能來自多個不同的群體或類別。

推薦方法:無監督學習方法(如聚類演算法),以識別不同的資料群體,並在每個群體內部進行異常檢測。

稀疏資料:

資料中的大部分值都集中在某個小的範圍內,而其餘值則分散在很大的範圍內。

推薦方法:基於密度的缺陷模式(如dbScAN聚類演算法),可以識別出低密度區域中的異常點。

歸納

在選擇缺陷模式時,需要綜合考慮資料的類別和分佈。對於結構化資料,統計方法和基於模型的方法通常更為有效;對於非結構化和半結構化資料,則可能需要結合基於規則和無監督學習的方法。同時,資料的分佈特性也決定了選擇何種缺陷模式更為合適。例如,正態分佈資料適合使用Z-score或基於距離的方法;偏態分佈資料則更適合使用四分位數法或基於百分位數的閾值設定;多峰分佈資料則可能需要使用聚類演算法來識別不同的資料群體。

總之,選擇適合的缺陷模式需要綜合考慮資料的類別、分佈特性以及分析的目標和需求。